Differences in ion channel phenotype and function between humans and animal models.
نویسندگان
چکیده
Ion channels play crucial roles in regulating a broad range of physiological processes. They form a very large family of transmembrane proteins. Their diversity results from not only a large number of different genes encoding for ion channel subunits but also the ability of subunits to assemble into homo- or heteromultimers, the existence of splice variants, and the expression of different regulatory subunits. These characteristics and the existence of very selective modulators make ion channels very attractive targets for therapy in a wide variety of pathologies. Some ion channels are already being targeted in the clinic while many more are being evaluated as novel drug targets in both clinical and preclinical studies. Advancing ion channel modulators from the bench to the clinic requires their assessment for safety and efficacy in animal models. While extrapolating results from one species to another is tempting, doing such without careful evaluation of the ion channels in different species presents a risk as the translation is not always straightforward. Here, we discuss differences between species in terms of ion channels expressed in selected tissues, differing roles of ion channels in some cell types, variable response to pharmacological agents, and human channelopathies that cannot fully be replicated in animal models.
منابع مشابه
O 13: Ion Channels in Autoimmune Neurodegeneration
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by widespread inflammation, focal demyelination and a variable degree of axonal and neuronal loss. Ionic conductances regulate T cell activation as well as neuronal function and thus have been found to play a crucial role in MS pathogenesis. Since present therapeutical approaches are only parti...
متن کاملمقایسه اثر وراپامیل، نیفدیپین و دیلتیازم بر آستانه تشنجات کلونیک ناشی از پنتیلن تترازول در موش سوری
Background & Objective: Verapamil, nifedipine and diltiazem are calcium channel blockers widely used as a variety of cardiovascular ailment in humans. A number of studies have shown that calcium channel blockers have anticonvulsant effect in a range of animal seizure models (but not all animals). The aim of this study was to investigate the effects of verapamil, nifedipine and diltiazem on pe...
متن کاملP 134: Use of Zinc in Drugs to Improve Neuroinflammation Disease
Zinc is a substance that regulates neural excitability by binding whit sodium channel and potassium channel. The efficiency of free zinc ion, make down the neural survival rate, reduced the peak amplitude of Na+ and make depolarization Na channel, increased the peak amplitude of transition outward k+ currents and delayed rectifier. Also it is an effective blocker of one subtype of tetrodoxine (...
متن کاملAnkyrins and Spectrins in Cardiovascular Biology and Disease
Ankyrins are adaptor proteins critical for the expression and targeting of cardiac membrane proteins, signaling molecules, and cytoskeletal elements. Findings in humans and animal models have highlighted the in vivo roles for ankyrins in normal physiology and in cardiovascular disease, most notably in cardiac arrhythmia. For example, human ANK2 loss-of-function variants are associated with a co...
متن کاملNeurological diseases caused by ion-channel mutations.
During the past decade, mutations in several ion-channel genes have been shown to cause inherited neurological diseases. This is not surprising given the large number of different ion channels and their prominent role in signal processing. Biophysical studies of mutant ion channels in vitro allow detailed investigations of the basic mechanism underlying these 'channelopathies'. A full understan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience
دوره 23 شماره
صفحات -
تاریخ انتشار 2018